
 Solution to Assignment 4

1. (a) Immediate: AC = 100 + 100 = 200
 (b) Direct: AC = 100 + M[100] = 100 + 600 = 700
 (c) Indirect: AC = 100 + M[M[100]] = 100 + M[600] = 100 + 700
 (d) Indexed: AC = 100 + M[100+400] = 100 + 400 = 500

Immediate addressing allows the programmer to directly specify the value of the
operand to be used in an instruction; in execution, there is no need to fetch the
operand from memory (hence fast).
Direct addressing is most often used to refer to program variables stored in
memory, according to the knowledge of the programmer at programming time.
Indirect addressing corresponds to pointers in programming; by adjusting their
values dynamically at runtime, the same instruction may operate on different
operands.
Indexed addressing is useful for implementing data structures, such as arrays. The
index (register) corresponds to the ‘logical’ index of a structure that can be used
for accessing (traversing) it.

2 Three-address version: #operand accesses # bytes in instruction
 (a) Subt R1, X, Y 2 1+1+2*3
 Add R2, X, Y 2 8
 Add R2, R2, Z 1 6
 Mult Z, R1, R2 1 6

(b) Total # operand accesses (read or write) = 6
(c) Total # bytes in the code = 28

Two-address version: #operand accesses # bytes in instruction
(a) Load R1, X 1 5
 Subt R1, Y 1 5
 Load R2, X 1 5
 Add R2, Y 1 5
 Add R2, Z 1 5
 Mult R1, R2 0 3
 Store Z, R1 1 5
(b) Total # operand accesses = 6
(c) Total # bytes in the code = 33

One-address version: #operand accesses # bytes in instruction
(a) Load X 1 4
 Subt Y 1 4
 Store T 1 4
 Load X 1 4
 Add Y 1 4
 Add Z 1 4
 Mult T 1 4
 Store Z 1 4

(b) Total # operand accesses = 8
(c) Total # bytes in the code = 32

Stack version: #operand accesses # bytes in instruction
(a) Push X 2 4
 Push Y 2 4
 Subt 3 1
 Push X 2 4
 Push Y 2 4
 Push Z 2 4
 Add 3 1
 Add 3 1
 Mult 3 1
 Pop Z 2 4

Note: Push X involves reading memory operand X and then writing it to
the new top of the stack. Hence two operand accesses are involved.
Similarly Subt involves popping the stack twice and pushing the result of
the subtraction back onto the stack, and hence three memory operand
accesses altogether.

(b) Total # operand accesses = 24
(c) Total # bytes in the code = 28

(d) In comparing the four versions, we can take note that # operand accesses

affect the time performance aspect while the # bytes in the code affect
both the space and time performance aspects. As a result, for the example
arithmetic expression, the 3-address version appears to the best while the
stack version the worst (in incurring excessive memory/stack accesses).
The two-address version is close to the 3-address version.

3(a) The maximum speedup corresponds to pumping the 200 instructions into the pipe

without any delay. The total number of cycles (until the last instruction exits from
the pipe) is 4 + 200 – 1 = 203 cycles or 203*60 ns.

 Hence the maximum speedup ration = 200*200 / (203*60)
(b) With an infinite number of instructions, the maximum speedup ratio is
 200*n / [(n + 3)*60] as n approaches infinity, and it is equal to 200/60
(c) In instruction processing, progression of instructions from a sequential stream of

instructions into a pipeline may have to be delayed. Such delays arise from (i)
data dependency: the result of an earlier instruction is needed for a later
instruction (which must be delayed until the former completes), (ii) control
dependency: conditional branches/jumps can alter the control flow but until the
condition is computed from the earlier instruction, the branch cannot be
effectively performed, and (iii) pipeline segments that involve memory accesses
may be delayed due to slowness/conflicts at the memory.

4(a) The program decrements ecx before executing jnz each time. Since initially ecx =

100, jnz S1 will be executed 100 times.

(b) In each iteration of the loop (between S1 and the jns instruction), the current array
element (via [ebx]) is added to ax, and the array pointer ebx is moved up by 2.
Hence upon exit from the loop, ebx contains X + 200.

(c) Continuing with the analysis in (b), the result in register ax is the sum of the 100
elements in the array starting from location X.

(d) One difficulty in rewriting the code in MARIE is the absence of index addressing
in MARIE. To achieve the same purpose, we may need to use ‘self-modifying’
code so the operand address in an instruction can be directly modified at runtime.
The following is a solution (assuming X is the starting address of the array),
showing only the code portion:

 S0 Load Count //assume Count = 100
 Skipcond 800 //skip if > 0
 Jump Done
 Load Sum //assume Sum saves the current sum
 S1 Add X //update current sum
 Store Sum
 Load Count
 Subt One
 Store Count
 Load One
 Add S1
 Store S1 //Now X in S1 is incremented by 1
 Jump S0
 Done Load Sum
 Store Y

Hints for problem 5:

A key issue is how one can delete the spaces in the message string before output it to the
screen. You need to know how to do it manually (by hand) before automating it with a
program. You can do so by scanning the message character by character; upon scanning a
space, you can remove it from the data storage so that when the next character is scanned,
the latter will move up to the storage occupied by the space character. Mechanizing this
in programming involves two pointers in the message string: one for the current storage
(to be filled) and the other for the current character being scanned. A partial piece of code
to accomplish this is shown below:

 mov ebx, msg //ebx is the storage pointer
 mov ecx, msg //ecx is the message pointer
 mov edx, 1 //edx is the length count of message
 again cmp byte [ecx], 0x20 //scanned character a space?
 jz skip
 cmp byte[ecx], 0xA //scanned character linefeed?
 jz done
 mov byte [ebx], [ecx] //keep the character in the message

 inc ebx
 inc edx
 skip inc ecx
 jump again
 done mov byte [ebx], [ecx] //terminate the string with linefeed

