Concordia University
 Department of Computer Science \& Software Engineering
 comp 335/4 Theoretical Computer Science

Assignment 3

1. In each case, what language is generated by CFG's below. Justify your claim (prove it!)
(a) G with productions $S \rightarrow a S a|b S b| a A b|b A a, A \rightarrow a A a| b A b|a| b \mid \epsilon$

Solution: Let's try a few derivations:
$S \Rightarrow a S a \Rightarrow b a S a b \Rightarrow \cdots w S w^{R}$
From here we can do $w S w^{R} \Rightarrow w a A b w^{R}$, or $w S w^{R} \Rightarrow w b A a w^{R}$.
Clearly $A \stackrel{*}{\Rightarrow} u$, where $u=u^{R}$. So all in all we get

$$
L(G)=\left\{w c_{1} u c_{2} w^{R}: w, u \in\{a, b\}^{*}, u=u^{R}, c_{1}, c_{2} \in\{a, b\}, c_{1} \neq c_{2}\right\} .
$$

(b) G with productions $S \rightarrow a S|b S| a$

Solution: It is easily seen that $L(G)=\left\{w a: w \in\{a, b\}^{*}\right\}$.
(c) $S \rightarrow S S|b S| a$

Solution: It is not so easily seen that for this grammar G, we also have $L(G)=L$, where $L=\left\{w a: w \in\{a, b\}^{*}\right\}$. So let's prove it.
Clearly $L(G) \subseteq L$ (All strings generated by G have to end in an a.)
To see that $L \subseteq L(G)$ we show by an induction on $|w|$, that for any $w \in\{a, b\}^{*}$, we have $w a \in L(G)$.
Basis: $|w|=0$. This means that $|w|=\epsilon$. We have indeed $S \Rightarrow a$.
Induction hypothesis: For any $w \in\{a, b\}^{*}$ where $|w| \leq n$, we have $w a \in L(G)$.
Induction Step:
Case 1: $w=a v,|v| \leq n$. By the IH we have $S \stackrel{*}{\Rightarrow} v a$. Then we can do the derivation $S \Rightarrow S S \Rightarrow a S \stackrel{*}{\Rightarrow}$ ava.
Case 2: $w=b v,|v| \leq n$. By the IH we have $S \stackrel{*}{\Rightarrow} v a$. Now we can do the derivation $S \Rightarrow b S \stackrel{*}{\Rightarrow} b v a$.
(d) G with productions $S \rightarrow S a S|b, S \rightarrow a T| b T|\epsilon, T \rightarrow a S| b S$.

Solution: Here again it might not be easy to see that $L(G)=\{a, b\}^{*}$, so we better prove it.
First we note that it is obvious that $L(G) \subseteq\{a, b\}^{*}$ (Any string in $L(G)$ is over $\{a, b\}$.) We will show on an induction on $|w|$, that if $w \in\{a, b\}^{*}$, then $w \in L(G)$. The trick is that we need two IH's, namely $L(G) \subseteq\{a, b\}^{*}$, and $T \stackrel{*}{\Rightarrow} x$, where x is any string in $\{a, b\}^{+}$
Basis: $|w|=0$. We have $\stackrel{*}{\Rightarrow} \epsilon$.
$|x|=1$. We have $T \Rightarrow a S \Rightarrow a \epsilon=a$, and $T \Rightarrow b S \Rightarrow b \epsilon=b$,
Induction hypothesis: For all $w \in\{a, b\}^{*}$, if $|w| \leq n$, then $w \in L(G)$.
For all $x \in\{a, b\}^{+}$, if $|x| \leq n$, then $T \stackrel{*}{\Rightarrow} x$.
Induction Step:
Case 1: $w=a v$. By IH, we have $S \stackrel{*}{\Rightarrow} v$. Then we can do the derivation $S \Rightarrow S a S \Rightarrow$ $\epsilon a S \stackrel{*}{\Rightarrow} a v$.
Case 2: $w=b v$. By IH, we have $T \stackrel{*}{\Rightarrow} v$. Now we can do the derivation $S \Rightarrow b T \stackrel{*}{\Rightarrow} b v$.
2. Find a CFG for each of the languages below.
(a) $L=\left\{a^{n} b^{m}: n \neq m-1\right\}$

Solution:
Here $n \neq m-1 \Leftrightarrow(n \geq m) \vee(n<m-1)$
Hence the CFG:
$S \rightarrow A|B| \lambda$
$A \rightarrow a A b|a A| a b$
$B \rightarrow a B b|B b| b b$
(b) $L=\left\{a^{n} b^{m} c^{k}: n=m\right.$ or $\left.m \neq k\right\}$

Solution:
Here $(n=m) \vee(m \neq k) \Leftrightarrow(n=m) \vee((m<k) \vee(m>k))$
For $(n=m): S \rightarrow A$ and $A \rightarrow a A b \mid \lambda$
For $(m>k): S \rightarrow B$ and $B \rightarrow b B c|b B| b$
For $(m<k): S \rightarrow C$ and $C \rightarrow b C c|C c| c$
Therefore, $S \rightarrow A|B| C|D B| D C|E A| E$
where $D \rightarrow a A \mid a$ and $E \rightarrow c E \mid c$
(c) $L=\left\{w \in\{a, b\}^{*}: n_{a}(w) \neq n_{b}(w)\right\}$

Solution: $L=L_{a} \cup L_{b}$, where $L_{a}=\left\{w \in\{a, b\}^{*}: n_{a}(w)>n_{b}(w)\right\}$, and $L_{b}=\left\{w \in\{a, b\}^{*}: n_{a}(w)<n_{b}(w)\right\}$, and
L_{a} can be gerenated by

$$
A \rightarrow a|a A| b A A|A A b| A b A
$$

and L_{b} by

$$
B \rightarrow b|b B| a B B|B B a| B a B
$$

For L we can then use $S \rightarrow A \mid B$.
(d) \bar{L}, where $L=\left\{w \in\{a, b\}^{*}: w=a^{n} b^{n}, n \geq 0\right\}$

Solution: We have
$\bar{L}=\left\{w \in\{a, b\}^{*}: w=a^{n} b^{m}, n \neq m\right\} \cup\left\{w b a u: w, u \in\{a . b\}^{*}\right\}$. We then get $S \rightarrow A|B| C$
$A \rightarrow a A b|a A| a$
$B \rightarrow a B b|B b| b$
$C \rightarrow D b a D$
$D \rightarrow a D|b D| \lambda$.
3. In each case below, show that the grammar is ambiguous, and find an equivalent unambiguous grammar.
(a) $S \rightarrow S S|a b| a$

Solution:
The grammar is ambiguous because, the string aaba can be obtained by two different leftmost derivations:
$S \Rightarrow S S \Rightarrow S S S \Rightarrow a S S \Rightarrow a a b S \Rightarrow a a b a$
$S \Rightarrow S S \Rightarrow a S \Rightarrow a S S \Rightarrow a a b S \Rightarrow a a b a$
An unambiguous version is: $S \rightarrow S a|S a b| a \mid a b$
(b) $S \rightarrow A B A, A \rightarrow a A|\epsilon, B \rightarrow b B| \epsilon$

Solution:
The grammar is ambiguous because the string a has two leftmost derivations:
$S \Rightarrow A B A \Rightarrow a A B A \Rightarrow a \epsilon B A \Rightarrow a \epsilon \epsilon A \Rightarrow a \epsilon \epsilon \epsilon=a$
$S \Rightarrow A B A \Rightarrow \epsilon B A \Rightarrow \epsilon \epsilon A \Rightarrow \epsilon \epsilon a=a$
An unambiguous version is:
$S \rightarrow A B A|A B| B A|A| B \mid \lambda$
$A \rightarrow a A \mid a$
$B \rightarrow b B \mid b$
(c) $S \rightarrow a S b|a a S b| \epsilon$

The grammar is ambiguous because, the string $a a a b b$ can be obtained by two leftmost derivations:
$S \Rightarrow a S b \Rightarrow a a a S b b \Rightarrow a a a \epsilon b b=a a a b b$
$S \Rightarrow a a S b \Rightarrow a a a S b b \Rightarrow a a a \epsilon b b=a a a b b$
An unambiguous version is:
$S \rightarrow A \mid \epsilon$
$A \rightarrow a A b|B| a b$
$B \rightarrow a a B b \mid a a b$
4. Design a PDA to accept each of the following languages. You may design your PDA to accept either by final state or empty stack, whichever is more convenient.
(a) The set of strings over $\{0,1\}$ such that no prefix has more 1 's than 0 's.

Solution: The PDA is

(b) The set of strings with twice as many 0's as 1 's.

Solution: The PDA is
$0, Z_{0}\left|0 Z_{0} \quad 0,0\right| 00 \quad 0,1 \mid \epsilon$

$1,1\left|111 \quad 1, Z_{0}\right| 11 Z_{0} \quad 1,0 \mid 1$
(c) The set of strings over $\{a, b\}$ that are not of the form $w w$, that is, not equal to any string repeated.

Solution: The PDA is

$$
a, Z_{0}\left|X Z_{0} \quad a, X\right| X X
$$

5. Construct a PDA corresponding to the context-free grammar
$S \rightarrow S S \mid\{S X \mid[S Y \mid \epsilon$
$X \rightarrow\}$
$Y \rightarrow$]
Note that $\{,[$,$] , and]$ are terminals.

Solution:

$$
\text { start } \longrightarrow \underbrace{1} \begin{aligned}
& \epsilon, Z_{0} \mid S Z_{0} \\
& \\
& \epsilon, S \mid S S \\
& \\
& \epsilon, S \mid\{S X \\
& \epsilon, S \mid[S Y \\
& \epsilon, X \mid\} \\
& \epsilon, Y \mid] \\
& \epsilon,\{\mid\{ \\
& \epsilon,\} \mid\} \\
& \epsilon,[\mid] \\
& \epsilon,] \mid]
\end{aligned}
$$

6. Consider the PDA $P=\left\{\left\{q_{0}, q_{1}, q_{2}\right\},\{a\},\left\{\boldsymbol{\phi}, Z_{0}\right\}, \delta, q_{0}, Z_{0},\left\{q_{2}\right\}\right\}$, where $\delta\left(q_{0}, a, Z_{0}\right)=\left\{\left(q_{1}, \boldsymbol{\phi} Z_{0}\right)\right\}$, $\delta\left(q_{1}, a, \boldsymbol{\mu}\right)=\left\{\left(q_{0}, \epsilon\right)\right\}$, and $\delta\left(q_{0}, \epsilon, Z_{0}\right)=\left\{\left(q_{2}, \epsilon\right)\right\}$.
Construct a CFG (using the method in the text) corresponding to P.

Solution:

$$
\begin{aligned}
& S \rightarrow\left[q_{0} Z_{0} q_{0}\right]\left|\left[q_{0} Z_{0} q_{1}\right]\right|\left[q_{0} Z_{0} q_{2}\right] \\
& {\left[q_{0} Z_{0} q_{0}\right] \rightarrow \epsilon\left[q_{1} \boldsymbol{Q}_{0}\right]\left[q_{0} Z_{0} q_{0}\right]\left|\epsilon\left[q_{1} q_{1}\right]\left[q_{1} Z_{0} q_{0}\right]\right| \epsilon\left[q_{1} \boldsymbol{\propto} q_{2}\right]\left[q_{2} Z_{0} q_{0}\right]} \\
& {\left[q_{0} Z_{0} q_{1}\right] \rightarrow \epsilon\left[q_{1} \boldsymbol{\aleph} q_{0}\right]\left[q_{0} Z_{0} q_{1}\right]\left|\epsilon\left[q_{1} q_{1}\right]\left[q_{1} Z_{0} q_{1}\right]\right| \epsilon\left[q_{1} q_{2}\right]\left[q_{2} Z_{0} q_{1}\right]} \\
& {\left[q_{0} Z_{0} q_{2}\right] \rightarrow \epsilon\left[q_{1} \boldsymbol{\leftrightarrow} q_{0}\right]\left[q_{0} Z_{0} q_{2}\right]\left|\epsilon\left[q_{1} \boldsymbol{\leftrightarrow} q_{1}\right]\left[q_{1} Z_{0} q_{2}\right]\right| \epsilon\left[q_{1} \boldsymbol{\aleph} q_{2}\right]\left[q_{2} Z_{0} q_{2}\right]} \\
& {\left[q_{0} Z_{0} q_{2}\right] \rightarrow \epsilon} \\
& {\left[q_{1} q_{0}\right] \rightarrow a}
\end{aligned}
$$

By deleting useless symbols and productions, and by renaming the variables, we get:

$$
\begin{aligned}
& S \rightarrow T \\
& T \rightarrow A T \\
& T \rightarrow \epsilon \\
& A \rightarrow a
\end{aligned}
$$

7. Use the Pumping Lemma for CFL's to show that none of the following languages are context-free.

***Notice: Answers are simplified ${ }^{* * *}$

(a) $L_{1}=\left\{w w: w \in\{a, b\}^{*}\right\}$ Solution: $z=a^{n} b^{n} a^{n} b^{n}$ is in the language. Now we show by pumping lemma for CFG's that the language can not be generated by any CFG. It is easy to see, since $|v w x| \leq n$, it does not contain the whole z So we have the following cases

- $v w x=a^{p} ; p \leq n$
- $v w x=a^{p} b^{q} ; p+q \leq n$
- $v w x=b^{q} ; q \leq n$
- $v w x=b^{q} a^{p} ; q+p \leq n$
and there is at least an a^{n} and b^{n} which would not be affected by pumping lemma, while as a result the generated string by pumping lemma will not be in the language.
(b) $L_{2}=\left\{a^{n} b^{k}: 0 \leq n \leq k^{2}\right\}$ Solution: In this case $z=a^{n^{2}} b^{n}$ is in the language and we have the following cases for pumping lemma:
- $v w x=a^{p} ; p \leq n$
- $v w x=a^{p} b^{q} ; p+q \leq n$
- $v w x=b^{q} ; q \leq n$

By pumping the first and last cases easily resulting in a string which is not in the language. But for the second case, we have $u v^{n+1} w x n+1 y=a^{n^{2}+n p} b^{n+n q}$ implies that $n^{2}+n p=(n(1+q))^{2}=n^{2}\left(1+2 q+q^{2}\right)=n^{2}+2 n^{2} q+n^{2} q^{2}$ that is, $n p=2 n^{2} q+n^{2} q^{2}$, thus, $p=2 n q+n q^{2}$. Now let check what happen for $u v^{2} w x 2 y=a^{n^{2}+p} b^{n+q}$. That is $n^{2}+p=n^{2}+2 n q+n q^{2}=n^{2}+2 n q+q^{2}=(n+q)^{2}$, which requires $n=1$ however, we can not restrict n to be equal 1 .
(c) $L_{3}=\left\{a^{n} b^{m} c^{k}: 0 \leq n<m, n \leq k \leq m\right\}$ Solution: $z=a^{n} b^{n} c^{n+1}$ is in the language.

So we have the following cases for $v w x$:

- $v w x=a^{p} ; p \leq n$
- $v w x=a^{p} b^{q} ; p+q \leq n$
- $v w x=b^{q} ; q \leq n$
- $v w x=b^{q} c^{r} ; q+r \leq n$
- $v w x=c^{r} ; r \leq n$

In first three cases $u v^{2} w x^{2} y$ will not be in the language. In last two cases $u v^{0} w x^{0} y$ will not be in the language.
8. Convert the following grammar into Chomsky normal form
$S \rightarrow a A \mid a B B$
$A \rightarrow a a A \mid \epsilon$
$B \rightarrow b B \mid b b C$
$C \rightarrow C \mid B$

Solution:

$$
\begin{aligned}
& S \rightarrow a A \mid a B B \\
& A \rightarrow a a A \mid \epsilon \\
& B \rightarrow b B \mid b b C \\
& C \rightarrow C \mid B
\end{aligned}
$$

Eliminate useless symbols:

$$
\begin{aligned}
& S \rightarrow a A \\
& A \rightarrow a a A \mid \epsilon
\end{aligned}
$$

Eliminate the ϵ-production:

$$
\begin{aligned}
& S \rightarrow a A \mid a \\
& A \rightarrow a a A \mid a a
\end{aligned}
$$

Eliminate unit product rules

$$
\begin{aligned}
& S \rightarrow a A \mid a \\
& A \rightarrow a a A \mid a a
\end{aligned}
$$

Break bodies of length more than two

$$
\begin{aligned}
& S \rightarrow a A \mid a \\
& A \rightarrow a X \mid a a \\
& X \rightarrow a A
\end{aligned}
$$

Change variables:

$$
\begin{aligned}
S & \rightarrow U A \mid U \\
A & \rightarrow U X \mid U U \\
X & \rightarrow U A \\
U & \rightarrow a
\end{aligned}
$$

9. (a) Show that the language $L=\left\{a^{n} b^{n}: a, b \in\{a, b\}, n\right.$ is not a multiple of 5$\}$ is context-free.

Solution: Let

$$
L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

and

$$
L_{2}=\left\{w \in\{a, b\}^{*}:|w| \text { is not a multiple of } 10\right\} .
$$

It is clear that L_{1} is context-free, and L_{2} is a regular language. Furthermore, we have $L=L_{1} \cap L_{2}$, since the intersection of a context-free language and a regular language is context-free, then L is context-free.
(b) Let $L=\left\{a^{n} b^{n}: n \geq 0\right\}$, and $M=\left\{a^{2 m} b^{2 p}: m \geq 0, p \geq 0\right\}$. Construct a PDA for L and a DFA ${ }^{1}$ for M. Then use the Cartesian construction to obtain a PDA for $L \cap M$.

Solution: DFA for M:

PDA for L:

Finally $L \cap M$:

| state input stack | new state new stack |
| :--- | :--- | :--- |

$(A, 1)$	a	Z_{0}	$(B, 1)$	Z_{0}
$(A, 1)$	a	X	$(B, 1)$	$X X$
$(A, 1)$	ϵ	Z_{0}	$(A, 2)$	Z_{0}
$(A, 1)$	ϵ	X	$(A, 2)$	$X X$
$(A, 2)$	b	$X X$	$(C, 2)$	X
$(A, 2)$	ϵ	Z_{0}	$(A, 3)$	Z_{0}
$(C, 2)$	b	$X X$	$(D, 2)$	X
$(D, 2)$	b	$X X$	$(C, 2)$	X
$(D, 2)$	ϵ	Z_{0}	$(D, 3)$	Z_{0}

[^0]
[^0]: ${ }^{1}$ Leave out the trap state

