
Concordia University
Department of Computer Science & Software Engineering

COMP 335/4 Theoretical Computer Science Winter 2015

Assignment 3

1. In each case, what language is generated by CFG’s below. Justify your claim (prove it!)

(a) G with productions S → aSa|bSb|aAb|bAa, A→ aAa|bAb|a|b|ε

Solution: Let’s try a few derivations:

S ⇒ aSa⇒ baSab⇒ · · ·wSwR

From here we can do wSwR ⇒ waAbwR, or wSwR ⇒ wbAawR.
Clearly A

∗⇒ u, where u = uR. So all in all we get

L(G) = {wc1uc2wR : w, u ∈ {a, b}∗, u = uR, c1, c2 ∈ {a, b}, c1 6= c2}.

(b) G with productions S → aS|bS|a

Solution: It is easily seen that L(G) = {wa : w ∈ {a, b}∗}.

(c) S → SS|bS|a

Solution: It is not so easily seen that for this grammar G, we also have L(G) = L,
where L = {wa : w ∈ {a, b}∗}. So let’s prove it.

Clearly L(G) ⊆ L (All strings generated by G have to end in an a.)

To see that L ⊆ L(G) we show by an induction on |w|, that for any w ∈ {a, b}∗, we
have wa ∈ L(G).

Basis: |w| = 0. This means that |w| = ε. We have indeed S ⇒ a.

Induction hypothesis: For any w ∈ {a, b}∗ where |w| ≤ n, we have wa ∈ L(G).

Induction Step:

Case 1: w = av, |v| ≤ n. By the IH we have S
∗⇒ va. Then we can do the derivation

S ⇒ SS ⇒ aS
∗⇒ ava.

Case 2: w = bv, |v| ≤ n. By the IH we have S
∗⇒ va. Now we can do the derivation

S ⇒ bS
∗⇒ bva.

1-Apr-2015, 4:07 pm

(d) G with productions S → SaS|b, S → aT |bT |ε, T → aS|bS.

Solution: Here again it might not be easy to see that L(G) = {a, b}∗, so we better
prove it.

First we note that it is obvious that L(G) ⊆ {a, b}∗ (Any string in L(G) is over {a, b}.)
We will show on an induction on |w|, that if w ∈ {a, b}∗, then w ∈ L(G). The trick is

that we need two IH’s, namely L(G) ⊆ {a, b}∗, and T
∗⇒ x, where x is any string in

{a, b}+

Basis: |w| = 0. We have
∗⇒ ε.

|x| = 1. We have T ⇒ aS ⇒ aε = a, and T ⇒ bS ⇒ bε = b,

Induction hypothesis: For all w ∈ {a, b}∗, if |w| ≤ n, then w ∈ L(G).

For all x ∈ {a, b}+, if |x| ≤ n, then T
∗⇒ x.

Induction Step:

Case 1: w = av. By IH, we have S
∗⇒ v. Then we can do the derivation S ⇒ SaS ⇒

εaS
∗⇒ av.

Case 2: w = bv. By IH, we have T
∗⇒ v. Now we can do the derivation S ⇒ bT

∗⇒ bv.

1-Apr-2015, 4:07 pm

2. Find a CFG for each of the languages below.

(a) L = {anbm : n 6= m− 1}

Solution:

Here n 6= m− 1⇔ (n ≥ m) ∨ (n < m− 1)
Hence the CFG:
S → A|B|λ
A→ aAb|aA|ab
B → aBb|Bb|bb

(b) L = {anbmck : n = m or m 6= k}

Solution:

Here (n = m) ∨ (m 6= k)⇔ (n = m) ∨ ((m < k) ∨ (m > k))
For (n = m): S → A and A→ aAb|λ
For (m > k): S → B and B → bBc|bB|b
For (m < k): S → C and C → bCc|Cc|c
Therefore, S → A|B|C|DB|DC|EA|E
where D → aA|a and E → cE|c

(c) L = {w ∈ {a, b}∗ : na(w) 6= nb(w)}

Solution: L = La ∪ Lb, where La = {w ∈ {a, b}∗ : na(w) > nb(w)}, and
Lb = {w ∈ {a, b}∗ : na(w) < nb(w)}, and

La can be gerenated by
A→ a|aA|bAA|AAb|AbA

and Lb by
B → b|bB|aBB|BBa|BaB.

For L we can then use S → A|B.

(d) L, where L = {w ∈ {a, b}∗ : w = anbn, n ≥ 0}

Solution: We have
L = {w ∈ {a, b}∗ : w = anbm, n 6= m} ∪ {wbau : w, u ∈ {a.b}∗}. We then get
S → A|B|C
A→ aAb|aA|a
B → aBb|Bb|b
C → DbaD
D → aD|bD|λ.

1-Apr-2015, 4:07 pm

3. In each case below, show that the grammar is ambiguous, and find an equivalent unam-
biguous grammar.

(a) S → SS|ab|a

Solution:

The grammar is ambiguous because, the string aaba can be obtained by two different
leftmost derivations:

S ⇒ SS ⇒ SSS ⇒ aSS ⇒ aabS ⇒ aaba

S ⇒ SS ⇒ aS ⇒ aSS ⇒ aabS ⇒ aaba
An unambiguous version is: S → Sa|Sab|a|ab

(b) S → ABA, A→ aA|ε, B → bB|ε

Solution:

The grammar is ambiguous because the string a has two leftmost derivations:

S ⇒ ABA⇒ aABA⇒ aεBA⇒ aεεA⇒ aεεε = a

S ⇒ ABA⇒ εBA⇒ εεA⇒ εεa = a

An unambiguous version is:
S → ABA|AB|BA|A|B|λ
A→ aA|a
B → bB|b

(c) S → aSb|aaSb|ε
The grammar is ambiguous because, the string aaabb can be obtained by two leftmost
derivations:

S ⇒ aSb⇒ aaaSbb⇒ aaaεbb = aaabb

S ⇒ aaSb⇒ aaaSbb⇒ aaaεbb = aaabb

An unambiguous version is:
S → A|ε
A→ aAb|B|ab
B → aaBb|aab

1-Apr-2015, 4:07 pm

4. Design a PDA to accept each of the following languages. You may design your PDA to
accept either by final state or empty stack, whichever is more convenient.

(a) The set of strings over {0, 1} such that no prefix has more 1’s than 0’s.

Solution: The PDA is

Astart B

C

0, Z0|0Z0 0, 0|00 1, 0|ε

1, Z0|Z0

ε, 0|0 ε, Z0|Z0

(b) The set of strings with twice as many 0’s as 1’s.

Solution: The PDA is

Astart B

0, Z0|0Z0 0, 0|00 0, 1|ε

1, 1|111 1, Z0|11Z0 1, 0|1

ε, Z0|Z0

1-Apr-2015, 4:07 pm

(c) The set of strings over {a, b} that are not of the form ww, that is, not equal to any
string repeated.

Solution: The PDA is

A B

CD

E F

a, Z0|XZ0 a,X|XX b,Z0|XZ0 b,X|XX

a,Z0|Z0 a,X|X

b,Z0|Z0 b,X|X

a,X|ε a, Z0|Y Z0 b, Z0|Y Z0 b,X|ε

a, Y |Y Y b, Y |Y Y

b, Z0|Z0 b, Y |Y

a,X|ε a, Z0|Y Z0 b, Z0|Y Z0

a, Y |Y Y b, Y |Y Y b,X|ε

a, Z0|Z0 a, Y |Y

a, Y |ε b, Y |ε

a, Y |ε b, Y |ε

ε, Z0|Z0

ε, Z0|Z0

1-Apr-2015, 4:07 pm

5. Construct a PDA corresponding to the context-free grammar
S → SS | {SX | [SY | ε
X → }
Y →]
Note that {, [,], and] are terminals.

Solution:

1start

ε, Z0|SZ0

ε, S|SS
ε, S|{SX
ε, S|[SY
ε, S|ε
ε,X|}
ε, Y |]
ε, {|{
ε, }|}
ε, [|]
ε,]|]

1-Apr-2015, 4:07 pm

6. Consider the PDA P = {{q0, q1, q2}, {a}, {♣, Z0}, δ, q0, Z0, {q2}}, where δ(q0, a, Z0) = {(q1,♣Z0)},
δ(q1, a,♣) = {(q0, ε)}, and δ(q0, ε, Z0) = {(q2, ε)}.
Construct a CFG (using the method in the text) corresponding to P .

Solution:

q0start q1

q2

a, Z0|♣Z0

a,♣|ε

ε, Z0|ε

S → [q0Z0q0] | [q0Z0q1] | [q0Z0q2]

[q0Z0q0]→ ε[q1♣q0][q0Z0q0] | ε[q1♣q1][q1Z0q0] | ε[q1♣q2][q2Z0q0]

[q0Z0q1]→ ε[q1♣q0][q0Z0q1] | ε[q1♣q1][q1Z0q1] | ε[q1♣q2][q2Z0q1]

[q0Z0q2]→ ε[q1♣q0][q0Z0q2] | ε[q1♣q1][q1Z0q2] | ε[q1♣q2][q2Z0q2]

[q0Z0q2]→ ε

[q1♣q0]→ a

By deleting useless symbols and productions, and by renaming the variables, we get:

S → T

T → AT

T → ε

A→ a

1-Apr-2015, 4:07 pm

7. Use the Pumping Lemma for CFL’s to show that none of the following languages are
context-free.

***Notice: Answers are simplified ***

(a) L1 = {ww : w ∈ {a, b}∗} Solution: z = anbnanbn is in the language. Now we show by

pumping lemma for CFG’s that the language can not be generated by any CFG. It is
easy to see, since |vwx| ≤ n, it does not contain the whole z So we have the following
cases

• vwx = ap; p ≤ n

• vwx = apbq; p+ q ≤ n

• vwx = bq; q ≤ n

• vwx = bqap; q + p ≤ n

and there is at least an an and bn which would not be affected by pumping lemma,
while as a result the generated string by pumping lemma will not be in the language.

(b) L2 = {anbk : 0 ≤ n ≤ k2} Solution: In this case z = an
2
bn is in the language and we

have the following cases for pumping lemma:

• vwx = ap; p ≤ n

• vwx = apbq; p+ q ≤ n

• vwx = bq; q ≤ n

By pumping the first and last cases easily resulting in a string which is not in the
language. But for the second case, we have uvn+1wxn+ 1y = an

2+npbn+nq implies that
n2 + np = (n(1 + q))2 = n2(1 + 2q+ q2) = n2 + 2n2q+ n2q2 that is, np = 2n2q+ n2q2,
thus, p = 2nq + nq2. Now let check what happen for uv2wx2y = an

2+pbn+q. That is
n2 + p = n2 + 2nq + nq2 = n2 + 2nq + q2 = (n + q)2, which requires n = 1 however,
we can not restrict n to be equal 1.

(c) L3 = {anbmck : 0 ≤ n < m, n ≤ k ≤ m} Solution: z = anbncn+1 is in the language.

So we have the following cases for vwx:

• vwx = ap; p ≤ n

• vwx = apbq; p+ q ≤ n

• vwx = bq; q ≤ n

• vwx = bqcr; q + r ≤ n

• vwx = cr; r ≤ n

In first three cases uv2wx2y will not be in the language. In last two cases uv0wx0y
will not be in the language.

1-Apr-2015, 4:07 pm

8. Convert the following grammar into Chomsky normal form

S → aA|aBB
A→ aaA|ε
B → bB|bbC
C → C|B

Solution:

S → aA|aBB
A→ aaA|ε
B → bB|bbC
C → C|B

Eliminate useless symbols:

S → aA

A→ aaA|ε

Eliminate the ε-production:

S → aA|a
A→ aaA|aa

Eliminate unit product rules

S → aA|a
A→ aaA|aa

Break bodies of length more than two

S → aA|a
A→ aX|aa
X → aA

Change variables:

S → UA|U
A→ UX|UU
X → UA

U → a

1-Apr-2015, 4:07 pm

9. (a) Show that the language L = {anbn : a, b ∈ {a, b}, n is not a multiple of 5}
is context-free.

Solution: Let
L1 = {anbn : n ≥ 0}

and
L2 = {w ∈ {a, b}∗ : |w| is not a multiple of 10}.

It is clear that L1 is context-free, and L2 is a regular language. Furthermore, we have
L = L1 ∩ L2, since the intersection of a context-free language and a regular language
is context-free, then L is context-free.

(b) Let L = {anbn : n ≥ 0}, and M = {a2mb2p : m ≥ 0, p ≥ 0}. Construct a PDA for L
and a DFA1 for M . Then use the Cartesian construction to obtain a PDA for L∩M .

Solution: DFA for M:

Astart B

C D

a

b

a

b

b

PDA for L:

1start 2 3

a,X|XX a,Z0|XZ0

ε,X|X ε,Z0|Z0

b,X|ε

ε, Z0|Z0

Finally L ∩M :

state input stack new state new stack

(A, 1) a Z0 (B, 1) Z0

(A, 1) a X (B, 1) XX
(A, 1) ε Z0 (A, 2) Z0

(A, 1) ε X (A, 2) XX
(A, 2) b XX (C, 2) X
(A, 2) ε Z0 (A, 3) Z0

(C, 2) b XX (D, 2) X
(D, 2) b XX (C, 2) X
(D, 2) ε Z0 (D, 3) Z0

1Leave out the trap state

1-Apr-2015, 4:07 pm

